skip to main content


Search for: All records

Creators/Authors contains: "Ni, Jianyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications. 
    more » « less
  2. Air pollution is a major global risk to human health and environment. Particle matter (PM) with diameters less than 2.5 micrometers (PM2.5) is more harmful to human health than other air pollutants because it can penetrate deeply into lungs and damage human respiratory system. A new image-based deep feature analysis method is presented in this paper for PM2.5 concentration estimation. Firstly, low level and high level features are extracted from images and their spectrums by a deep learning neural network, and then regression models are created using the extracted deep features to estimate the PM2.5 concentrations, which are future refined by the collected weather information. The proposed method was evaluated using a PM2.5 dataset with 1460 photos and the experimental results demonstrated that our method outperformed other state-of-the-art methods. 
    more » « less